VISCOUS FLOW

Wontae Hwang Energy & Environment Flow Lab

Department of Mechanical & Aerospace Engineering Seoul National University

VISCOUS FLOW

Energy & Environment Flow Lab

Course Introduction

- Lecture: Viscous Flow (M2794.008700)
- Professor: Wontae Hwang
 - Office: Bldg 301 Rm 1207 (880-1723)
 - Email: <u>wthwang@snu.ac.kr</u>
 - Office hour: Tuesday & Thursday, after the class (till 17:00)
- o Goals
 - This course introduces various viscous flow phenomena.
 - Specific cases where exact solutions are available, including canonical problems such as Couette and Poiseuille flows
 - Similarity solution methods to solve the various problems where the viscosity effect is important
 - Approximate methods and topics associated with the stability, transition, and turbulence

Course Introduction

- o Textbook
 - Main
 - Fundamental Mechanics of Fluids (I. G. Currie), 3rd Ed., Marcel Dekker, Inc. (2003)
 - Supplementary materials please check "eTL" before the class
 - References
 - Viscous Fluid Flow (F. White)
 - Boundary Layer Theory (H. Schlichting)
 - An Introduction to Fluid Dynamics (G. K. Batchelor)
 - Papers from archival journals
 - ETC.

VISCOUS FLOW

Course Introduction

- Scope (schedule) to be operated flexibly
 - REVIEWS: Flow Kinematics and Governing Equations
 - Exact Solutions: Couette flow, Poiseuille flow, Stoke's problems
 - Stagnation point flow, Channel flow
 - Low Reynolds Number flow
 - Midterm
 - Laminar boundary layers: Similarity
 - Blasius, Falkner-Skan solutions
 - Approximate integral solutions
 - Separation, Stability of boundary layers
 - Orr-Sommerfeld Equations
 - Transition to turbulence
 - Turbulent boundary layers, velocity profiles, integral analysis
 - Final Exam
- o Evaluation
 - Attendance (10%), Homework (20%), Midterm (30%), Final (40%)

VISCOUS FLOW